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Biological visual systems cannot measure the properties that define the physical world. Nonetheless, visually guided behaviors of humans and
other animals are routinely successful.The purpose of this article is to consider how this feat is accomplished. Most concepts of vision propose,
explicitly or implicitly, that visual behavior depends on recovering the sources of stimulus features either directly or by a process of statistical
inference. Here we argue that, given the inability of the visual system to access the properties of the world, these conceptual frameworks
cannot account for the behavioral success of biological vision. The alternative we present is that the visual system links the frequency of
occurrence of biologically determined stimuli to useful perceptual and behavioral responses without recovering real-world properties. The
evidence for this interpretation of vision is that the frequency of occurrence of stimulus patterns predicts many basic aspects of what we
actually see. This strategy provides a different way of conceiving the relationship between objective reality and subjective experience, and
offers a way to understand the operating principles of visual circuitry without invoking feature detection, representation, or probabilistic inference.
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In the 1960s and for the following few
decades, it seemed all but certain that the
rapidly growing body of information about
the electrophysiological and anatomical prop-
erties of neurons in the primary visual path-
way of experimental animals would reveal
how the brain uses retinal stimuli to generate
perceptions and appropriate visually guided
behaviors (1). However, despite the passage
of 50 years, this expectation has not been met.
In retrospect, the missing piece is understand-
ing how stimuli that cannot specify the prop-
erties of physical sources can nevertheless
give rise to generally successful perceptions
and behaviors.
The problematic relationship between vi-

sual stimuli and the physical world was
recognized by Ptolemy in the 2nd century,
Alhazen in the 11th century, Berkeley in the
18th century, Helmholtz in the 19th century,
and many others since (2–12). To explain
how accurate perceptions and behaviors
could arise from stimuli that cannot specify
their sources, Helmholtz, arguably the most
influential figure over this history, proposed
that observers augmented the information in
retinal stimuli by making “unconscious infer-
ences” about the world based on past experi-
ence. The idea of vision as inference has been
revived in the last two decades using Bayesian
decision theory, which posits that the uncer-
tain provenance of retinal images illus-
trated in Fig. 1 is resolved by making use
of the probabilistic relationship between
image features and their possible physical
sources (13–16).

The different concept of vision we consider
here is based on a more radical reading of
the challenge of responding to stimuli that
cannot specify the metrics of the environ-
ment (17–20). The central point is that be-
cause there is no biologically feasible way to
solve this problem by mapping retinal image
features onto real-world properties, visual
systems like ours circumvent it by generating
perceptions and behaviors that depend on
the frequency of occurrence of biologically
determined stimuli that are tied to reproduc-
tive success. In what follows, we describe
how this strategy of vision operates, how it
explains the anomalous way we experience
the physical world, and what it implies
about visual system circuitry.

Vision in Empirical Terms
Although it is often assumed that the purpose
of the evolved properties of the eye and early-
level visual processing is to present stimulus
features to the brain so that neural compu-
tations can recreate a representation of the
environment, there is overwhelming evidence
that we do not see the physical world for
what it is (17, 18, 20–24). Whatever else this
evidence may suggest, it indicates that to be
useful, perceptions need not accord with
measured reality. Indeed, generating veridical
perceptions seems impossible given the un-
certain significance of information conveyed
by retinal stimuli (Fig. 1), even when the
constraints of physics that define the world
are taken into account (10–12).
In terms of neo-Darwinian evolution,

however, a visual strategy that can circumvent

the inverse optics problem and explain why
perceptions differ from the measured prop-
erties of the world is straightforward. Ran-
dom changes in the structure and function
of visual systems in ancestral forms would
be favored by natural selection according to
how well the ensuing percepts guided be-
haviors that promoted reproductive success.
Any configuration of an eye and/or neural
circuitry that strengthened the empirical link
between visual stimuli and useful behavior
would tend to increase in the population,
whereas less beneficial ocular properties and
circuit configurations would not. As a result,
both perceptions and, ultimately, behaviors
would depend on previously instantiated
neural circuitry that promoted reproductive
success; consequently, the recovery or repre-
sentation of the actual properties of the world
would be unnecessary.

Stimulus Biogenesis
The key to understanding how and why this
general strategy explains the anomalous way
we perceive the world when the properties of
objects cannot be directly determined is rec-
ognizing that visual stimuli are not the pas-
sive result of physics or the statistics of physical
properties in the environment, but are actively
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created according to their influence on re-
productive success.
In contrast to the intuition that vision

begins with a retinal image that is then pro-
cessed and eventually represented in the vi-
sual brain according to a series of more-or-
less logical steps, in the present argument the
retinal image is just one of a series of stages in
the biological transformation of disordered
photon energy that begins at the corneal
surface and continues in the processing car-
ried out by the retina, thalamus, and cortex.
In this framework, the “visual stimulus” is
defined by the transformation of information
by a recurrent network of ascending and
descending connections, where the instru-
mental goal of generating perceptions and
behaviors that work is met despite the ab-
sence of information about the actual prop-
erties of the world in which the animal must
survive. Thus, although visual stimuli are
usually taken to be images determined by
the physical environment, they are better
understood as determined by the biological
properties of the eye and the rest of the
visual system.
Many of these properties are already well

known. For a visual stimulus to exist, pho-
tons must first be transformed into a topo-
graphical array ordered by the evolved

properties of the eye. The evolved pre-
neural properties that accomplish this are
the dimensions of the eye, the shape and
refractive index of the cornea, the dynamic
characteristics of the lens, and the proper-
ties of ocular media, all of which serve to
filter and focus photons impinging on
a small region of the corneal surface. This
process is continued by an arrangement of
photoreceptors that restricts transduction
to a limited range of photon energies, and
the chain of early-level neural receptive
field properties that continue to transform
the biologically crafted input at the level of
the retina. Although the nature of neural
processing is less clear as one ascends in the
primary visual system, enough is known
about the organization of early-level re-
ceptive fields to provide a general idea of
how they contribute to this overall strategy
of relying on the frequency of occurrence
of visual stimuli to generate successful
perceptions, as described in the following
section. The major role of the physical
world in this understanding of vision is
simply to provide empirical feedback re-
garding which perceptions and behaviors
promoted reproductive success, and which
did not.

An Example: The Perception of
Lightness
To illustrate how this concept of vision
works, consider the biological transformation
of radiant energy into stimuli at an early stage
where the preneural and neural events are
best understood. Because increasing the lu-
minance of any region of a retinal image
increases the number of photons captured
by the relevant photoreceptors, common
sense suggests that physical measurements
of light intensity and its perceived lightness
should be proportional, and that two re-
gions returning the same amount of light
should appear to be equally light or dark.
Perceptions of lightness, however, do not
meet these expectations: In psychophysical
experiments, the apparent lightness elicited
by the luminance values at any particular
region of a retinal image is clearly nonlinear
and depends heavily on the surrounding
luminance values (20, 21, 24).
To understand the significance of these

discrepancies, take a typical luminance pat-
tern on the retina arising from photons that
are ordered by the evolved properties of the
eye. For all intents and purposes, an image
such as the example in Fig. 2A will have
occurred only once; it is highly unlikely that
the retina of an observer would ever again be
activated by exactly the same pattern of lu-
minance values falling on the same topo-
graphical array of millions of receptors.
Because patterns like this are effectively
unique, even a large catalog of such images
would be of little or no help in promoting
useful visual behavior on an empirical
(trial and error) basis. However, smaller
regions of the image, such as those sam-
pled by the templates in Fig. 2A, would
have occurredmore than once, somemany
times, as shown by the distributions in
Fig. 2B.
There is, of course, a lower limit to the size

of samples that would be useful. If, for ex-
ample, the size of the sample were reduced to
a single point, the frequency of occurrence of
the “pattern” would be maximal, but the
resulting perceptions and behaviors would be
based on a minimum of information. The
greatest biological success would presumably
arise from frequently occurring samples that
comprised relatively small patterns in which
the responses of the relevant neurons used
information supplied by both the luminance
value at any point and a tractable number of
surrounding luminance values. This ar-
rangement corresponds to the way retinal
images are in fact processed by the receptive
fields of early-level visual neurons, which, in
the central vision of rhesus macaques (and

Fig. 1. The uncertain provenance of retinal stimuli. Images formed on the retina cannot specify physical properties
such as illumination, surface reflectance, atmospheric transmittance, and the many other factors that determine the
luminance values in visual stimuli. The same conflation of physical information holds for geometrical, spectral (color),
and sequential (motion) stimulus properties. Thus, the behavioral significance of any visual stimulus is uncertain.
Understanding how the image formation process might be inverted to recover properties of the environment under
these circumstances is referred to as the inverse optics problem.
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presumably humans), are on the order of
a degree or less of visual arc (25, 26)—
roughly the size of the templates used in
Fig. 2A.
To explore the merits of this concept of

vision, templates like those in Fig. 2A can be
used to sample the patterns that are routinely
processed at the early stages of the visual
pathway (the information extracted at other
stages would, in principle, work as well). If
perceptions of lightness indeed depend on
the frequency of occurrence of small patterns
of luminance values, then these data should
predict what we see. One way of representing
the frequency of occurrence of such stimuli is
by transforming the distributions in Fig. 2B
into cumulative distribution functions, thereby
allowing the target luminance values in dif-
ferent surrounds to be ranked relative to one

another (Fig. 3). In this way, the lightness
values that would be elicited by the lumi-
nance value of any region of a pattern in
the context of surrounding luminance values
can be specified. In the present concept of
vision, the differences in these ranks account
for the perceived differences in lightness of
the identical target luminance values in Fig. 3.
Similar analyses have been used to explain

not only the perception of simple luminance
patterns like those in Figs. 2 and 3 but also
perceptions elicited by a variety of complex
luminance patterns (20, 27), geometrical
patterns (18), spectral patterns (28), and
moving stimuli (29, 30). In addition, artificial
neural networks that evolve on the basis of
ranking the frequency of luminance patterns
can rationalize major aspects of early-level

receptive field properties in experimental ani-
mals (31, 32).

Why Stimulus Frequency Predicts
Perception and Behavior
Missing from this account, however, is why
the frequencies of occurrence of visual stimuli
sampled in this way predict perception. The
reason, we maintain, is that the relative
number of times biologically generated pat-
terns are transduced and processed in ac-
cumulated experience tracks reproductive
success. In Fig. 3, for example, the frequen-
cies of occurrence of the patterns at the stage
of photoreception have caused the central
luminance value to occur more often when
in the lower luminance surround than in the
higher one, resulting in a steeper slope at
that point on the cumulative distribution
function. If the relative ranking along this
function corresponds to the perception of
lightness, then the higher the rank of a target
luminance (T) in a given surround relative
to another target luminance with the same
surround, the lighter the target should ap-
pear. Therefore, because the target luminance
in a darker surround (Fig. 3, Left) has a
higher rank than the same target luminance
in a lighter surround (Fig. 3, Right), the for-
mer should be seen as lighter than the latter,
as it is. Because the frequency of occurrence
of patterns is an evolved property—and be-
cause these relative rankings along the func-
tion correspond to perception—the visually
guided behaviors that result will in varying
degrees have contributed to reproductive
success. Thus, by aligning the frequencies of
occurrence of light patterns over evolutionary
time with perceptions of light and dark and
the behaviors they elicit, this strategy can
explain vision without solving the inverse
optics problem.

Visual Perception on This Basis
Despite the inclination to do so, it would be
misleading to imagine that the perceptions
predicted by the relative ranking of luminance
or other patterns depend on information
about the “statistics of the environment.” It is,
of course, true that because physical objects
tend to be uniform in their local compo-
sition, nearby luminance values in evolved
retinal image patterns tend to be similar;
indeed, the work of Brünswik (4) and,
later, Gibson (33), which focused on how
constraints of the environment might be
conveyed in the structure of images, relied
on this and other statistical information
to explain vision. However, as illustrated in
Fig. 1, the relationship between properties
of the physical world and retinal images
conflates such information, undermining

Fig. 2. Accumulated human experience with luminance patterns. (A) To evaluate the concept that perception arises
as a function of accumulated experience over evolutionary time, calibrated digital photographs can be sampled with
templates about the size of visual receptive fields to measure how often different patterns of luminance occur in visual
stimuli. (B) By repeated sampling, the frequency of occurrence of the luminance of any target region in a pattern of
luminance values (indicated by a question mark) can be represented as a frequency distribution. The frequency of
occurrence of the central region’s luminance is different in the two surrounds, as would be true for any other pattern
of luminance values assessed in this way. (The background image in A is from ref. 50; the data in B are after ref. 27).
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strategies that rely on statistical features of
the environment to explain perception.
Although circumventing the inverse

problem empirically gives the subjective im-
pression that we perceive the actual proper-
ties of objects and conditions in the world,
this is not the case. Nor does responding to
luminance values (or other image attributes)
according to the frequency of occurrence of
local patterns reveal reality or bring subjective
values “closer” to objective ones. It therefore
follows that these discrepancies between
lightness and luminance—or any other visual
qualities and their physical correlates—are
not “illusions” (22, 23) but simply signatures
of the strategy we and, presumably, other vi-
sual animals have evolved to promote useful
behaviors despite the inability of biological
visual systems tomeasure physical parameters.
In sum, successful perceptions and be-

havior arise not because the actual properties
of the world are recovered from images, but
because the perceptual values assigned by the
frequency of occurrence of visual stimuli ac-
cord with the reproductive success of the
species and individual. As a result, the visual
qualities that we see are better understood as
signifying perceptions and behaviors that led
to reproductive success in the past rather
than encoding information, statistical or
otherwise, about the world in the present.

Other Interpretations of Vision
What, then, can be said about other concepts
of vision, and how they compare with the
strategy of vision presented here? Three cur-
rent frameworks are considered: vision as
detecting and representing image features,
vision as probabilistic inference, and vision
as efficient coding.

Vision as Feature Detection and Repre-
sentation. An early and still widely accepted
idea is that visual (and other) sensory systems
operate analytically, detecting behaviorally
important features in retinal images that are
then used to construct neural representations
of the world at the level of the visual cortex.
This interpretation of visual processing
accords with electrophysiological evidence
that demonstrates the selectivity of neuronal
receptive fields, as well as with the compelling
impression that what we see is external re-
ality. Although attractive on these grounds,
this interpretation of vision is ruled out by
the inability of the visual system to measure
the physical parameters of the world (Fig. 1),
as well as its inability to explain a host of
phenomena in luminance, color, form, dis-
tance, depth, and motion psychophysics on
this basis (20).

Vision as Probabilistic Inference. More
difficult to assess is the idea that vision is
based on a strategy of probabilistic inference.
Helmholtz introduced the idea of unconscious
inference in the 19th century to explain how
vision might improve responses to retinal
images that he took to be inherently in-
adequate stimuli (3). In the first half of the
20th century, visual inferences were con-
ceived in terms of gestalt laws or other heu-
ristics. More recently, many mathematical
psychologists and computer scientists have
endorsed the idea of vision as statistical in-
ference by proposing that images map back
onto the properties of objects and conditions
in the world as Bayesian probabilities (13, 15,
16, 34–37).
Bayes’ theorem (38) states that the proba-

bility of a conditional inference about A given

B being true (the posterior probability) is
determined by the probability of B given A
(the likelihood function) multiplied by the
ratio of the independent probabilities of A
(the prior probability) and B. This way of
making rational predictions in the face of
uncertainty is widely and successfully used in
applications ranging from weather fore-
casting and medical diagnosis to poker and
sports betting.
The value of Bayes’ theorem as a tool to

understand vision, however, is another mat-
ter. To be biologically useful, the posterior
probability would have to indicate the prob-
ability of a property of the world (e.g., surface
reflectance or illumination values) under-
lying a given visual stimulus. This, in turn,
would depend on the probability of the visual
stimulus given the physical property (the
likelihood) and the prior probability of that
state of the world. Although this approach is
logical, information about the likelihood and
prior probabilities is simply not available to
the visual system given the inverse problem,
thereby negating the biological feasibility
of this explanation. In contrast, the empirical
concept of vision described here avoids
these problems by pursuing a different goal:
fomenting reproductive success despite an
inability to recover properties of the physical
world in which behavior must take place.
Although the frequency of occurrence of
stimuli is often used to infer the probability of
an underlying property of the physical world
given an image, no such inferences are being
made in this empirical strategy. Nor does the
approach rely on a probabilistic solution: The
biologically determined frequency of occur-
rence of visual stimuli simply generates useful
perceptions and behaviors according to re-
productive success.
These reservations add to other criticisms

of Bayesian decision theory applied to cog-
nitive issues, and to neuroscience generally
(39, 40).

Vision as Efficient Coding. Another pop-
ular framework for understanding vision and
its underlying circuitry is efficient coding
(5, 41–45). A code is a rule for converting
information from one form to another. In
vision, coding is understood as the conversion
of retinal stimulus patterns into the electro-
chemical signals (receptor, synaptic and ac-
tion potentials) used for communication with
the rest of the brain; this information is then
taken to be decoded by further computational
processes to achieve perceptual and behav-
ioral effects. Given the nature of sensory
transduction and the distribution of pe-
ripheral sensory effects to distant sites by
action potentials, coding for the purpose of

Fig. 3. Predicting lightness percepts based on the frequency of occurrence of stimulus patterns. The frequency
distributions from Fig. 2B are here transformed to distribution functions that indicate the cumulative frequency of
occurrence of the central target luminance given the luminance of the (Inset) surround. The dashed lines show the
percentile rank of a specific central luminance value (T ) in each distribution. As Insets show, central squares with
identical photometric values elicit different lightness percepts (called “simultaneous lightness contrast”) predicted by
their relative rankings (relative frequencies of occurrence).
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neural computation seems an especially apt
metaphor, and has been widely accepted
(44, 46, 47).
Such approaches variously interpret visual

circuits as carrying out optimal coding pro-
cedures based on minimizing energy use (5,
42, 43, 48–50), making accurate predictions
(51–53), eliminating redundancy (54), or
normalizing information (55, 56). The com-
mon theme of these overlapping ideas is that
optimizing information transfer by mini-
mizing redundancy, lowering wiring costs,
and/or maximizing the entropy of sensory
outputs will all have been advantageous to
visual animals (57).
The importance of efficiency (whether in

coding or otherwise) is clearly a factor in any
evolutionary process, and the importance of
these several ways of achieving it is not in
doubt. However, generating perceptions by
means of circuitry that contends with a world
whose physical parameters cannot be mea-
sured by biological vision is a different goal,
in much the same way that the goals of any
organ system differ from the concurrent need
to achieve them as efficiently as possible.
Thus, these efforts are not explanations of
visual perception, which no more depends
on efficiency than the meaning of a verbal
message depends on how efficiently it is
transmitted.

Implications for Future Research
Given the central role it has played in mod-
ern neuroscience, the way scientists conceive
vision is broadly relevant to the future di-
rection of brain research, its potential bene-
fits, and its economic value. An issue much
debated at present is the intention to invest
heavily over the coming decade in a complete
analysis of human brain connectivity at both
macroscopic and microscopic levels (58–60)
(also http://blogs.nature.com/news/2013/
04/obama-launches-ambitious-brain-map-
project-with-100-million.html, accessed
February 24, 2014). The impetus for this
initiative is largely based on the success of
the human genome project in scientific,
health, technical, and financial terms. To
underscore this parallel, the goal of the
project is referred to as obtaining the “brain
connectome.”
Although neuroscientists rightly applaud

this investment in better understanding brain
connectivity, the related technology and
possible health benefits, a weakness in the
comparison with the human genome project
(and with genetics in general) is that the basic
functional and structural principles of genes
were already well established at the outset.
In contrast, the principles underlying the
structure and function of the human brain

and its component circuits remain un-
known. Indeed, the stated aim of the brain
connectome project is the hope that addi-
tional anatomical information will help es-
tablish these principles.
Given this goal, the operation of the visual

system—the brain region about which most
is now known—is especially relevant. If the
function of visual circuitry, a presumptive
bellwether for operations in the rest of the
brain, has been determined by evolutionary
and individual history rather than by logical
“design” principles, then understanding func-
tion by examining brain connectivity may be
far more challenging than imagined. Perhaps
the most daunting obstacle is that reproduc-
tive success—the driver of any evolved strat-
egy of vision—is influenced by a very large
number of factors, many of which will be
difficult to discern, let alone quantify. Thus,
the relation between accumulated experi-
ence and reproductive success may never be
specified in more than qualitative or semi-
quantitative terms.
In light of these obstacles, it may be that

the best way to understand the principles
underlying neural connectivity is to evolve
increasingly complex networks in progres-
sively more realistic environments. Until rel-
atively recently, pursuing this goal would
have been fanciful. However, the advent of
genetic and other computer algorithms has
made evolving artificial neural networks in
simple environments relatively easy (31, 32).
This approach should eventually be able to link
evolved visual functions and their operating
principles with the wealth of detail already
known from physiological and anatomical
studies over the last 50 y.

Conclusion
A central challenge in understanding vision is
that biological visual systems cannot measure
or otherwise access the properties of the
physical world. We have argued that vision
like ours addresses this challenge by evolving
the ability to form and transduce small, bi-
ologically determined image patterns whose
frequencies of occurrence directly link per-
ceptions and behaviors with reproductive
success. In this way, perceptions and behav-
iors come to work in the physical world
without sensory measurements of the envi-
ronment, and without inferences or the com-
plex computations that are often imagined.
As a result, however, vision does not accord
with reality but with perceptions and behav-
iors that succeed in a world whose actual
properties are not revealed. This framework
for vision, supported by evidence from hu-
man psychophysics and predictions of per-
ceptions based on accumulated experience
(i.e., the frequency of occurrence of bio-
genic stimuli), implies that Gustav Fechner’s
goal of understanding the relationship be-
tween objective (physical) and subjective
(psychological) domains (61) can be met if
pursued in these biological terms rather than
in the statistical, logical, and computational
terms that are more appropriate to physics,
mathematics, and algorithm-based computer
science. Although it may not be easy to relate
this understanding of vision to higher-order
tasks such as object recognition, if the ar-
gument here is correct, then all further uses
of visual information must be built up from
the way we see these foundational qualities.
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